Advances in thermal infrared remote sensing for land surface modeling
نویسندگان
چکیده
Over 10 years ago, John Norman and co-authors proposed a thermal-based land surface modeling strategy that treated the energy exchange and kinetic temperatures of the soil and vegetated components in a unique ‘‘Two-Source Model’’ (TSM) approach. The TSM formulation addresses key factors affecting the convective and radiative exchange within the soil–canopy–atmosphere system, focusing on the relationship between radiometric and aerodynamic temperature. John Norman’s contribution came at a time when thermal-based techniques applied to standard ‘‘One-Source Model’’ (OSM) for large scale land surface flux and evapotranspiration (ET) estimationwere generally considered unreliable and not viable for operational remote sensing applications. Others have subsequently modified OSM schemes to accommodate the radiometric–aerodynamic temperature relationship for partial canopy cover conditions, approaching accuracies achieved with the TSM. In this study, Norman’s TSM and two current OSM schemes are evaluated over a range in canopy cover and moisture conditions simulated by the Cupid model—a complex soil–vegetation–atmosphere transfer (SVAT) scheme developed by Norman that simulates the complete radiation, convection/turbulence and hydrologic processes occurring at the soil/canopy interface. The use of SVAT simulations permitted the evaluation of TSM and OSM approaches over a greater range of hydrometeorological and vegetation cover conditions than typically available from field observations. The utility of the TSM versus OSM approaches in handling extremes in moisture/vegetation cover conditions simulated by the SVAT model Cupid is presented. Generally the TSM approach outperformed the OSM schemes for the extreme conditions. Moreover, the ability of the TSM to partition ET into evaporation and transpiration components provides additional hydrologic information about themoisture status of the soil and canopy system, and about the vertical distribution of moisture in the soil profile (surface layer vs. root zone). Examples for actual landscapes are presented in the application of the TSM as incorporated within in the Atmosphere Land EXchange Inverse/Disaggregation ALEXI (ALEXI/DisALEXI) modeling system, designed for operational applications at local to continental scales using multi-scale thermal imagery. This strategy for utilizing radiometric surface temperature in land surface modeling has converted many skeptics and more importantly rejuvenatedmany in the research and operational remote sensing community to reconsider the utility of thermal infrared remote sensing for monitoring land surface fluxes from local to regional
منابع مشابه
Application of remote sensing data in measuring the area of the Zardkuh glaciers
Glaciers influenced by climatic factors and therefore as an important indicator in the study of climate change are studied. Although morphometric analyzes of glaciers based on the analysis of optical satellite data can provide an opportunity to measure ice outcrops, but the identification and determination of the buried glaciers underneath the glacial debris and, consequently, the determination...
متن کاملGeothermal area detection using Landsat 8 operational land imager and thermal infrared sensor data in Ardabil province, Iran
GIS and remote sensing technique with using Landsat 8 images data are very important methods for detection of geothermal resources. In this study, Land Surface Temperature (LST) for Ardabil province in northwest of Iran, was derived with the use of Landsat 8 Operational Land Imager (OLI) of 30 m spatial resolution and Thermal Infrared Sensor (TIRS) data of 100 m spatial resolution. We consider ...
متن کاملUsing remote sensing data and GIS to evaluate air pollution and their relationship with land cover and land use in Baghdad City
The research used the satellite image (Landsat 7 ETM ) within the thermal infrared sixth band (TIR6) and geographic information system (GIS) to determine the air pollution and its relationship with the land cover (LC) and land use (LU) of Baghdad city. Concentration of total suspended particles (TSP), lead (Pb), carbon oxides (CO, CO2), and sulphur dioxide (SO2) were obtained from 22 ground mea...
متن کاملAn optimization algorithm for separating land surface temperature and emissivity from multispectral thermal infrared imagery
Land surface temperature (LST) and emissivity are important components of land surface modeling and applications. The only practical means of obtaining LST at spatial and temporal resolutions appropriate for most modeling applications is through remote sensing. While the popular split-window method has been widely used to estimate LST, it requires known emissivity values. Multispectral thermal ...
متن کاملEstimating Land Surface Temperature in the Central Part of Isfahan Province Based on Landsat-8 Data Using Split- Window Algorithm
Land surface temperature (LST) is used as one of the key sources to study land surface processes such as evapotranspiration, development of indexes, air temperature modeling and climate change. Remote sensing data offer the possibility of estimating LST all over the world with high temporal and spatial resolution. Landsat-8, which has two thermal infrared channels, provides an opportunity for t...
متن کامل